
"ILBM" IFF Interleaved Bitmap

Date: January 17, 1986 (CRNG data updated Oct, 1988 by Jerry Morrison)
(Appendix E added and CAMG data updated Oct, 1988 by Commodore-Amiga, Inc.)

From: Jerry Morrison, Electronic Arts
Status: Released and in use

1. Introduction

"EA IFF 85" is Electronic Arts' standard for interchange format files. "ILBM" is a format for a 2 dimensional raster 
graphics image, specifically an InterLeaved bitplane BitMap image with color map. An ILBM is an IFF "data 
section" or "FORM type", which can be an IFF file or a part of one.  ILBM allows simple, highly portable raster 
graphic storage.

An ILBM is an archival representation designed for three uses. First, a stand-alone image that specifies exactly how 
to display itself (resolution, size, color map, etc.). Second, an image intended to be merged into a bigger picture 
which has its own depth, color map, and so on. And third, an empty image with a color map selection or "palette" 
for a paint program. ILBM is also intended as a building block for composite IFF FORMs like "animation 
sequences" and "structured graphics". Some uses of ILBM will be to preserve as much information as possible 
across disparate environments. Other uses will be to store data for a single program or highly cooperative programs 
while maintaining subtle details. So we're trying to accomplish a lot with this one format.

This memo is the IFF supplement for FORM ILBM. Section 2 defines the purpose and format of property 
chunks bitmap header "BMHD", color map "CMAP", hotspot "GRAB", destination merge data "DEST", sprite 
information "SPRT", and Commodore Amiga viewport mode "CAMG". Section 3 defines the standard data 
chunk "BODY". These are the "standard" chunks. Section 4 defines the nonstandard data chunks. Additional 
specialized chunks like texture pattern can be added later. The ILBM syntax is summarized in Appendix A as a 
regular expression and in Appendix B as a box diagram. Appendix C explains the optional run encoding scheme. 
Appendix D names the committee responsible for this FORM ILBM standard.

Details of the raster layout are given in part 3, "Standard Data Chunk". Some elements are based on the 
Commodore Amiga hardware but generalized for use on other computers. An alternative to ILBM would be 
appropriate for computers with true color data in each pixel, though the wealth of available ILBM images makes 
import and export important.

Reference:

"EA IFF 85" Standard for Interchange Format Files describes the underlying conventions for all IFF files.
Amiga® is a registered trademark of Commodore-Amiga, Inc.
Electronic Arts™ is a trademark of Electronic Arts.
Macintosh™ is a trademark licensed to Apple Computer, Inc.
MacPaint™ is a trademark of Apple Computer, Inc.



2. Standard Properties

ILBM has several defined property chunks that act on the main data chunks. The required property "BMHD" and 
any optional properties must appear before any "BODY" chunk. (Since an ILBM has only one BODY chunk, any 
following properties would be superfluous.) Any of these properties may be shared over a LIST of several IBLMs 
by putting them in a PROP ILBM (See the EA IFF 85 document).

BMHD

The required property "BMHD" holds a BitMapHeader as defined in the following documentation. It describes the 
dimensions of the image, the encoding used, and other data necessary to understand the BODY chunk to follow.

typedef UBYTE Masking; /* Choice of masking technique. */
#define mskNone 0
#define mskHasMask 1
#define mskHasTransparentColor 2
#define mskLasso 3

typedef UBYTE Compression; /* Choice of compression algorithm applied 
to the rows of all source and mask planes. "cmpByteRun1" is the byte 
run encoding described in Appendix C. Do not compress across rows! */

#define cmpNone 0
#define cmpByteRun1 1

typedef struct {
UWORD w, h; /* raster width & height in pixels */
WORD  x, y; /* pixel position for this image */
UBYTE nPlanes; /* # source bitplanes */
Masking     masking;
Compression compression;
UBYTE pad1; /* unused; ignore on read, write as 0 */
UWORD transparentColor; /* transparent "color number" (sort of) */
UBYTE xAspect, yAspect; /* pixel aspect, a ratio width : height */
WORD  pageWidth, pageHeight; /* source "page" size in pixels */
} BitMapHeader;

Fields are filed in the order shown. The UBYTE fields are byte-packed (the C compiler must not add pad bytes to 
the structure).

The fields w and h indicate the size of the image rectangle in pixels. Each row of the image is stored in an integral 
number of 16 bit words. The number of words per row is words=((w+15)/16) or Ceiling(w/16). The 
fields x and y indicate the desired position of this image within the destination picture. Some reader programs may 
ignore x and y. A safe default for writing an ILBM is (x, y) = (0, 0).

The number of source bitplanes in the BODY chunk is stored in nPlanes. An ILBM with a CMAP but no BODY 
and nPlanes = 0 is the recommended way to store a color map.

Note: Color numbers are color map index values formed by pixels in the destination bitmap, which may be deeper 
than nPlanes if a DEST chunk calls for merging the image into a deeper image.

The field masking indicates what kind of masking is to be used for this image. The value mskNone designates 
an opaque rectangular image. The value mskHasMask means that a mask plane is interleaved with the bitplanes 
in the BODY chunk (see below). The value mskHasTransparentColor indicates that pixels in the source 
planes matching transparentColor are to be considered "transparent". (Actually, transparentColor 
isn't a "color number" since it's matched with numbers formed by the source bitmap rather than the possibly deeper 
destination bitmap. Note that having a transparent color implies ignoring one of the color registers. The value 
mskLasso indicates the reader may construct a mask by lassoing the image as in MacPaint™. To do this, put a 
1 pixel border of transparentColor around the image rectangle. Then do a seed fill from this border. Filled 
pixels are to be transparent.



Issue: Include in an appendix an algorithm for converting a transparent color to a mask plane, and maybe a lasso 
algorithm.

A code indicating the kind of data compression used is stored in compression. Beware that using data 
compression makes your data unreadable by programs that don't implement the matching decompression algorithm. 
So we'll employ as few compression encodings as possible. The run encoding byteRun1 is documented in 
Appendix C.

The field pad1 is a pad byte reserved for future use. It must be set to 0 for consistency.

The transparentColor specifies which bit pattern means "transparent".  This only applies if masking is 
mskHasTransparentColor or mskLasso. Otherwise, transparentColor should be 0.  (see above)

The pixel aspect ratio is stored as a ratio in the two fields xAspect and yAspect. This may be used by programs 
to compensate for different aspects or to help interpret the fields w, h, x, y, pageWidth, and pageHeight, 
which are in units of pixels. The fraction xAspect/yAspect represents a pixel's width/height. It's recommended 
that your programs store proper fractions in the BitMapHeader, but aspect ratios can always be correctly compared 
with the test:

xAspect•yDesiredAspect = yAspect•xDesiredAspect

Typical values for aspect ratio are width : height = 10 : 11  for an Amiga 320 x 200 display and 1 : 1 for a 
Macintosh™ display.

The size in pixels of the source "page" (any raster device) is stored in pageWidth and pageHeight, e.g. (320, 
200) for a low resolution Amiga display. This information might be used to scale an image or to automatically set 
the display format to suit the image. Note that the image can be larger than the page.

CMAP

The optional (but encouraged) property "CMAP" stores color map data as triplets of red, green, and blue intensity 
values. The n color map entries ("color registers") are stored in the order 0 through n-1, totaling 3n bytes. Thus n 
is the ckSize/3. Normally, n would equal 2nPlanes.

A CMAP chunk contains a ColorMap array as defined below.  Note that these typedefs assume a C compiler that 
implements packed arrays of 3-byte elements.

typedef struct {
UBYTE red, green, blue; /* color 

intensities 0..255 */
} ColorRegister; /* size = 3 bytes 

*/

typedef ColorRegister ColorMap[n]; /* size = 3n bytes */

The color components red, green, and blue represent fractional intensity values in the range 0 through 255 256ths. 
White is (255, 255, 255) and black is (0, 0, 0). If your machine has less color resolution, use the high order 
bits. Shift each field right on reading (or left on writing) and assign it to (from) a field in a local packed format 
like Color4, below. This achieves automatic conversion of images across environments with different color 
resolutions. On reading an ILBM, use defaults if the color map is absent or has fewer color registers than you need. 
Ignore any extra color registers.  (See Appendix E for a better way to write colors)

The example type Color4 represents the format of a color register in working memory of an Amiga computer, 
which has 4 bit video DACs. (The ":4" tells smarter C compilers to pack the field into 4 bits.)

typedef struct {
unsigned pad1 :4, red :4, 

green :4, blue :4;



} Color4; /* Amiga RAM 
format. Not filed. */

Remember that every chunk must be padded to an even length, so a color map with an odd number of entries would 
be followed by a 0 byte, not included in the ckSize.

GRAB

The optional property "GRAB" locates a "handle" or "hotspot" of the image relative to its upper left corner, e.g. 
when used as a mouse cursor or a "paint brush". A GRAB chunk contains a Point2D.

typedef struct {
WORD x, y; /* relative coordinates (pixels) */
} Point2D;

DEST

The optional property "DEST" is a way to say how to scatter zero or more source bitplanes into a deeper destination 
image. Some readers may ignore DEST.

The contents of a DEST chunk is DestMerge structure:

typedef struct {
UBYTE depth; /* # bitplanes in the original source */
UBYTE pad1; /* unused; for consistency put 0 here */
UWORD planePick; /* how to scatter source bitplanes into destination */
UWORD planeOnOff; /* default bitplane data for planePick */
UWORD planeMask; /* selects which bitplanes to store into */
} DestMerge;

The low order depth number of bits in planePick, planeOnOff, and planeMask correspond one-to-
one with destination bitplanes. Bit 0 with bitplane 0, etc. (Any higher order bits should be ignored.) "1" bits 
in planePick mean "put the next source bitplane into this bitplane", so the number of "1" bits should equal 
nPlanes. "0" bits mean "put the corresponding bit from planeOnOff into this bitplane". Bits in planeMask gate 
writing to the destination bitplane: "1" bits mean "write to this bitplane" while "0" bits mean "leave this bitplane 
alone". The normal case (with no DEST property) is equivalent to planePick = planeMask = 2nPlanes 
- 1.

Remember that color numbers are formed by pixels in the destination bitmap (depth planes deep) not in the source 
bitmap (nPlanes planes deep).

SPRT

The presence of an "SPRT" chunk indicates that this image is intended as a sprite. It's up to the reader program to 
actually make it a sprite, if even possible, and to use or overrule the sprite precedence data inside the SPRT chunk:

typedef UWORD SpritePrecedence; /* relative precedence, 0 is the highest*/

Precedence 0 is the highest, denoting a sprite that is foremost.

Creating a sprite may imply other setup. E.g. a 2 plane Amiga sprite would have transparentColor = 0. Color 
registers 1, 2, and 3 in the CMAP would be stored into the correct hardware color registers for the hardware sprite 
number used, while CMAP color register 0 would be ignored.

CAMG



A "CAMG" chunk is specifically for the Commodore Amiga computer, readers on other computers may ignore 
CAMG. All Amiga-based reader and writer software should deal with CAMG. The Amiga supports many different 
video display modes including interlace, extra half-bright, and hold & modify.  At this time a CAMG chunk 
contains a single long word (length=4).  The high 16 bits are currently reserved by Commodore; they must be 
written as zeros and ignored when read.  The low 16 bits of the CAMG will contain a ViewModes word.  This value 
can be used to determine the ViewModes information in effect when the ILBM was saved.  In the future CAMG 
may be extended to specify other information or video modes.

Some of the ViewModes flags are not appropriate to use in a CAMG, these should be masked out when writing or 
reading.  Here are definitions for the bits to be removed:

#include <graphics/view.h>

#define BADFLAGS (SPRITES|VP_HIDE|GENLOCK_AUDIO|GENLOCK_VIDEO)
#define FLAGMASK (~BADFLAGS)
#define CAMGMASK (FLAGMASK & 0000FFFFL)

…
camg.ViewModes = myScreen->ViewPort.Modes & CAMGMASK; /* Writing */
NewScreen.ViewModes = camg.ViewModes & CAMGMASK; /* Reading */



3. Standard "BODY" Data Chunk

Raster Layout

Raster scan proceeds left-to-right (increasing X) across scan lines, then top-to-bottom (increasing Y) down columns 
of scan lines. The coordinate system is in units of pixels, where (0,0) is the upper left corner.

The raster is typically organized as bitplanes in memory. The corresponding bits from each plane, taken together, 
make up an index into the color map which gives a color value for that pixel. The first bitplane, plane 0, is the low 
order bit of these color indexes.

A scan line is made of one "row" from each bitplane. A row is one planes’ bits for one scan line, but padded out to a 
word (2 byte) boundary (not necessarily the first word boundary). Within each row, successive bytes are displayed 
in order and the most significant bit of each byte is displayed first.

A "mask" is an optional "plane" of data the same size (w, h) as a bitplane.  It tells how to "cut out" part of the 
image when painting it onto another image. "One" bits in the mask mean "copy the corresponding pixel to the 
destination". "Zero" mask bits mean "leave this destination pixel alone". In other words, "zero" bits designate 
transparent pixels.

The rows of the different bitplanes and mask are interleaved in the file (see below). This localizes all the 
information pertinent to each scan line. It makes it much easier to transform the data while reading it to adjust the 
image size or depth. It also makes it possible to scroll a big image by swapping rows directly from the file without 
the need for random-access to all the bitplanes.

BODY

The source raster  is stored in a "BODY" chunk. This one chunk holds all bitplanes and the optional mask, 
interleaved by row.

The BitMapHeader, in a BMHD property chunk, specifies the raster's dimensions w, h, and nPlanes. It also 
holds the masking field which indicates if there is a mask plane and the compression field which indicates the 
compression algorithm used. This information is needed to interpret the BODY chunk, so the BMHD chunk must 
appear first. While reading an ILBM's BODY, a program may convert the image to another size by filling (with 
transparentColor) or clipping.

The BODY's content is a concatenation of scan lines. Each scan line is a concatenation of one row of data from 
each plane in order 0 through nPlanes-1 followed by one row from the mask (if masking = hasMask 
). If the BitMapHeader field compression is cmpNone, all h rows are exactly (w+15)/16 words wide. 
Otherwise, every row is compressed according to the specified algorithm and the stored widths depend on the data 
compression.

Reader programs that require fewer bitplanes than appear in a particular ILBM file can combine planes or drop the 
high-order (later) planes. Similarly, they may add bitplanes and/or discard the mask plane.

Do not compress across rows, and don't forget to compress the mask just like the bitplanes. Remember to pad any 
BODY chunk that contains an odd number of bytes and skip the pad when reading.



4. Nonstandard Data Chunks

The following data chunks were defined after various programs began using FORM ILBM so they 
are "nonstandard" chunks.  See the registry document for the latest information on additional nonstandard chunks.

CRNG

A "CRNG" chunk contains "color register range" information. It's used by Electronic Arts' Deluxe Paint program 
to identify a contiguous range of color registers for a "shade range" and color cycling. There can be zero or more 
CRNG chunks in an ILBM, but all should appear before the BODY chunk. Deluxe Paint normally writes 4 CRNG 
chunks in an ILBM when the user asks it to "Save Picture".

typedef struct {
WORD  pad1; /* reserved for future use; store 0 here */
WORD  rate; /* color cycle rate */
WORD  flags; /* see below */
UBYTE low, high; /* lower and upper color registers selected */
} CRange;

The bits of the flags word are interpreted as follows: if the low bit is set then the cycle is "active", and if this bit 
is clear it is not active.  Normally, color cycling is done so that colors move to the next higher position in the cycle, 
with the color in the high slot moving around to the low slot.  If the second bit of the flags word is set, the cycle 
moves in the opposite direction.  As usual, the other bits of the flags word are reserved for future expansion. Here 
are the masks to test these bits:

#define RNG_ACTIVE  1
#define RNG_REVERSE 2

The fields low and high indicate the range of color registers (color numbers) selected by this CRange.

The field active indicates whether color cycling is on or off. Zero means off.

The field rate determines the speed at which the colors will step when color cycling is on. The units are such that 
a rate of 60 steps per second is represented as 214 = 16384. Slower rates can be obtained by linear scaling: for 30 
steps/second, rate = 8192; for 1 step/second, rate = 16384/60 ≈ 273.

CCRT

Commodore's Graphicraft program uses a similar chunk "CCRT" (for Color Cycling Range and Timing). This 
chunk contains a CycleInfo structure.

typedef struct {
WORD  direction; /* 0 = don't cycle. 1 = cycle forwards (1, 2, 3).

 * -1 = cycle backwards (3, 2, 1) */
UBYTE start, end; /* lower and upper color registers selected */
LONG  seconds; /* # seconds between changing colors plus... */
LONG  microseconds; /* # microseconds between changing colors */
WORD  pad; /* reserved for future use; store 0 here */
} CycleInfo;

This is very similar to a CRNG chunk. A program would probably only use one of these two methods of expressing 
color cycle data, new programs should use CRNG. You could write out both if you want to communicate this 
information to both Deluxe Paint and Graphicraft.



Appendix A. ILBM Regular Expression

Here's a regular expression summary of the FORM ILBM syntax. This could be an IFF file or a part of one.

ILBM ::= "FORM" #{ "ILBM" BMHD [CMAP] [GRAB] [DEST] [SPRT] 
[CAMG]

CRNG* CCRT* [BODY] }

BMHD ::= "BMHD" #{ BitMapHeader }
CMAP ::= "CMAP" #{ (red green blue)* } [0]
GRAB ::= "GRAB" #{ Point2D }
DEST ::= "DEST" #{ DestMerge }
SPRT ::= "SPRT" #{ SpritePrecedence }
CAMG ::= "CAMG" #{ LONG }

CRNG ::= "CRNG" #{ CRange }
CCRT ::= "CCRT" #{ CycleInfo }
BODY ::= "BODY" #{ UBYTE* } [0]

The token "#" represents a ckSize LONG count of the following {braced} data bytes. E.g. a BMHD's "#" should 
equal sizeof(BitMapHeader). Literal strings are shown in "quotes", [square bracket items] are optional, 
and "*" means 0 or more repetitions. A sometimes-needed pad byte is shown as "[0]".

The property chunks BMHD, CMAP, GRAB, DEST, SPRT, CAMG and any CRNG and CCRT data chunks may 
actually be in any order but all must appear before the BODY chunk since ILBM readers usually stop as soon as 
they read the BODY. If any of the 6 property chunks are missing, default values are inherited from any shared 
properties (if the ILBM appears inside an IFF LIST with PROPs) or from the reader program's defaults. If any 
property appears more than once, the last occurrence before the BODY is the one that counts since that's the one 
that modifies the BODY.

Appendix B. ILBM Box Diagram

Here's a box diagram for a simple example: an uncompressed image 320 x 200 pixels x 3 bitplanes. The text to the 
right of the diagram shows the outline that would be printed by the IFFCheck utility program for this particular file.

.BODY  24000

.CMAP  21

.BMHD  20

FORM  24070  ILBM

0

0, 0, 0 …

24000‘BODY’

0, 0, 0; 32, 0, 0; 64, 0, 0 …

21‘CMAP’

320, 200, 0, 0, 3, 0, 0, 0 …

20‘BMHD’

‘ILBM’

24070‘FORM’

24070

The "0" after the CMAP chunk is a pad byte.



Appendix C. ByteRun1 Run Encoding

The run encoding scheme byteRun1 is best described by pseudo code for the decoder Unpacker (called 
UnPackBits in the Macintosh™ toolbox):

UnPacker:
LOOP until produced the desired number of bytes

Read the next source byte into n
SELECT n FROM

[0..127] => copy the next n+1 bytes literally
[-1..-127] => replicate the next byte -n+1 times
-128 => no operation
ENDCASE;

ENDLOOP;

In the inverse routine Packer, it's best to encode a 2 byte repeat run as a replicate run except when preceded and 
followed by a literal run, in which case it's best to merge the three into one literal run. Always encode 3 byte repeats 
as replicate runs.

Remember that each row of each scan line of a raster is separately packed.

Appendix D. Standards Committee

The following people contributed to the design of this FORM ILBM standard:

Bob "Kodiak" Burns, Commodore-Amiga
R. J. Mical, Commodore-Amiga
Jerry Morrison, Electronic Arts
Greg Riker, Electronic Arts
Steve Shaw, Electronic Arts
Dan Silva, Electronic Arts
Barry Walsh, Commodore-Amiga

Appendix E. IFF Hints

Hints on ILBM files from Jerry Morrison, Oct 1988.  How to avoid some pitfalls when reading ILBM files:

• Don't ignore the 
BitMapHeader.masking field. A bitmap with a mask (such as a partially-transparent DPaint brush or a DPaint 
picture with a stencil) will read as garbage if you don't de-interleave the mask.

• Don't assume all images are 
compressed. Narrow images aren't usually run-compressed since that would actually make them longer.

• Don't assume a particular 
image size. You may encounter overscan pictures and PAL pictures.

There's a better way to read a BODY than the example IFF code. The GetBODY routine should call a GetScanline 
routine once per scan line, which calls a GetRow routine for each bitplane in the file. This in turn calls a 
GetUnpackedBytes routine, which calls a GetBytes routine as needed and unpacks the result. (If the picture is 
uncompressed, GetRow calls GetBytes directly.) Since the unpacker knows how many packed bytes to read, this 
avoids juggling buffers for a memory-to-memory UnPackBytes routine.

Caution: If you make many AmigaDOS calls to read or write a few bytes at a time, performance will be mud! 
AmigaDOS has a high overhead per call, even with RAM disk. So use buffered read/write routines.

Different hardware display devices have different color resolutions:



Device R:G:B bits maxColor
Mac SE 1 1
IBM EGA 2:2:2 3
Atari ST 3:3:3 7
Amiga 4:4:4 15
CD-I 5:5:5 31
IBM VGA 6:6:6 63
Mac II 8:8:8 255

An ILBM CMAP defines 8 bits of Red, Green and Blue (ie. 8:8:8 bits of R:G:B). When displaying on hardware 
which has less color resolution, just take the high order bits.  For example, to convert ILBM's 8-bit Red to the 
Amiga's 4-bit Red, right shift the data by 4 bits  (R4 := R8 >> 4).

To convert hardware colors to ILBM colors, the ILBM specification says just set the high bits (R8 := R4 << 4). 
But you can transmit higher contrast to foreign display devices by scaling the data [0..maxColor] to the full range 
[0..255]. In other words, R8 := (Rn x 255) ÷ maxColor. (Example #1:  EGA color 1:2:3 scales to 85:170:255.  
Example #2:  Amiga 15:7:0 scales to 255:119:0) This makes a big difference where maxColor is less than 15. In the 
extreme case, Mac SE white (1) should be converted to ILBM white (255), not to ILBM gray (128).

CGA and EGA subtleties

IBM EGA colors in 350 scan line mode are 2:2:2 bits of R:G:B, stored in memory as xxR'G'B'RBG. That's 3 low-
order bits followed by 3 high-order bits.

IBM CGA colors are 4 bits stored in a byte as xxxxIRGB. (EGA colors in 200 scan line modes are the same as 
CGA colors, but stored in memory as xxxIxRGB.) That's 3 high-order bits (one for each of R, G, and B) plus one 
low-order "Intensity" bit for all 3 components R, G, and B. Exception: IBM monitors show IRGB = 0110 as brown, 
which is really the EGA color R:G:B = 2:1:0, not dark yellow 2:2:0.


